游客
题文

(本小题满分16分)如图,在平面直角坐标系中,椭圆的离心率为,直线轴交于点,与椭圆交于两点.当直线垂直于轴且点为椭圆的右焦点时, 弦的长为

(1)求椭圆的方程;
(2)若点的坐标为,点在第一象限且横坐标为,连结点与原点的直线交椭圆于另一点,求的面积;
(3)是否存在点,使得为定值?若存在,请指出点的坐标,并求出该定值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 困难
登录免费查看答案和解析
相关试题

已知函数(其中)的图像与x轴的交点中,相邻两个交点之间的距离为,且图像上一个最低点为
(Ⅰ)求的解析式;
(Ⅱ)当,求的单调增区间.

设函数在区间上的最小值为

(Ⅰ)求
(Ⅱ)试求所有的正整数,使得为数列中的项;
(Ⅲ)求证:

已知椭圆的右顶点为,过的焦点且垂直长轴的弦长为1.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点在抛物线上,在点处的切线与交于点.线段的中点与的中点的横坐标相等时,求的最小值.

已知函数是定义在上的奇函数,当
(Ⅰ)求的解析式;
(Ⅱ)设,,求证:当时,

如图(1)在直角梯形中,=2,分别是的中点,现将沿折起,使平面平面(如图2).
(Ⅰ)求二面角的大小;
(Ⅱ)在线段上确定一点,使平面,并给出证明过程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号