对于给定数列,如果存在实常数,使得对于任意的都成立,我们称这个数列是“类数列”.(1)若,判断数列是否为“类数列”,并说明理由;(2)若数列是“类数列”,则数列、是否一定是“类数列”,若是的,加以证明;若不是,说明理由;(3)若数列满足:,设数列的前项和为,求的表达式,并判断是否是“类数列”.
(本小题满分10分) 设 (1)若,求实数的值; (2)求在方向上的正射影的数量。
(满分14分) 已知:定义在R上的函数,对于任意实数a, b都满足,且,当. (Ⅰ)求的值; (Ⅱ)证明在上是增函数; (Ⅲ)求不等式的解集.
(满分14分)已知是定义在R上的奇函数,且当时,. (Ⅰ)求的解析式; (Ⅱ)问是否存在这样的正数a, b使得当时,函数的值域为,若存在,求出所有a, b的值,若不存在,说明理由.
(满分14分)已知函数(a为常数)是奇函数. (Ⅰ)求a的值与函数的定义域; (Ⅱ)若当时,恒成立.求实数的取值范围.
(满分14分)已知集合. (Ⅰ)若; (Ⅱ)若,求实数a.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号