甲数的等于乙数的
,乙数是60,甲数是多少?
(1)已知 与 是同类项,求 、 的值;
(2)先化简后求值: ,其中 .
已知:如图,在矩形 中, , ,对角线 , 交于点 .点 从点 出发,沿 方向匀速运动,速度为 ;同时,点 从点 出发,沿 方向匀速运动,速度为 ;当一个点停止运动时,另一个点也停止运动.连接 并延长,交 于点 ,过点 作 ,交 于点 .设运动时间为 ,解答下列问题:
(1)当 为何值时, 是等腰三角形?
(2)设五边形 的面积为 ,试确定 与 的函数关系式;
(3)在运动过程中,是否存在某一时刻 ,使 ?若存在,求出 的值;若不存在,请说明理由;
(4)在运动过程中,是否存在某一时刻 ,使 平分 ?若存在,求出 的值;若不存在,请说明理由.
问题提出:如何将边长为 ,且 为整数)的正方形分割为一些 或 的矩形( 的矩形指边长分别为 , 的矩形)?
问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.
探究一:
如图①,当 时,可将正方形分割为五个 的矩形.
如图②,当 时,可将正方形分割为六个 的矩形.
如图③,当 时,可将正方形分割为五个 的矩形和四个 的矩形
如图④,当 时,可将正方形分割为八个 的矩形和四个 的矩形
如图⑤,当 时,可将正方形分割为九个 的矩形和六个 的矩形
探究二:
当 ,11,12,13,14时,分别将正方形按下列方式分割:
所以,当 ,11,12,13,14时,均可将正方形分割为一个 的正方形、一个 的正方形和两个 的矩形.显然, 的正方形和 的矩形均可分割为 的矩形,而 的正方形是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些 或 的矩形.
探究三:
当 ,16,17,18,19时,分别将正方形按下列方式分割:
请按照上面的方法,分别画出边长为18,19的正方形分割示意图.
所以,当 ,16,17,18,19时,均可将正方形分割为一个 的正方形、一个 的正方形和两个 的矩形.显然, 的正方形和 的矩形均可分割为 的矩形,而 的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些 或 的矩形.
问题解决:如何将边长为 ,且 为整数)的正方形分割为一些 或 的矩形?请按照上面的方法画出分割示意图,并加以说明.
实际应用:如何将边长为61的正方形分割为一些 或 的矩形?(只需按照探究三的方法画出分割示意图即可)
某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本 (元)与月产销量 (个)满足如下关系:
月产销量 (个) |
|
160 |
200 |
240 |
300 |
|
每个玩具的固定成本 (元) |
|
60 |
48 |
40 |
32 |
|
(1)写出月产销量 (个)与销售单价 (元)之间的函数关系式;
(2)求每个玩具的固定成本 (元)与月产销量 (个)之间的函数关系式;
(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?
(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?
如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用 表示.已知抛物线上 , 两点到地面的距离均为 ,到墙边 的距离分别为 , .
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为 ,则最多可以连续绘制几个这样的拋物线型图案?