(本题10分)某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了八年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.
(1)本次调查的学生人数为 人;
(2)补全频数分布直方图;
(3)根据图形提供的信息判断,下列结论正确的是 (只填所有正确结论的代号);
A.由图(1)知,学生完成作业所用时间的中位数在第三组内 |
B.由图(1)知,学生完成作业所用时间的众数在第三组内 |
C.图(2)中,90~120数据组所在扇形的圆心角为108° |
D.图(1)中,落在第五组内数据的频率为0.15 |
(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校八年级560名学生中,课业负担适中的学生约有多少人?
筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为 的筒车 按逆时针方向每分钟转 圈,筒车与水面分别交于点 、 ,筒车的轴心 距离水面的高度 长为 ,筒车上均匀分布着若干个盛水筒.若以某个盛水筒 刚浮出水面时开始计算时间.
(1)经过多长时间,盛水筒 首次到达最高点?
(2)浮出水面3.4秒后,盛水筒 距离水面多高?
(3)若接水槽 所在直线是 的切线,且与直线 交于点 , .求盛水筒 从最高点开始,至少经过多长时间恰好在直线 上.
(参考数据: , ,
如图,在平面直角坐标系 中,反比例函数 的图象经过点 ,点 在 轴的负半轴上, 交 轴于点 , 为线段 的中点.
(1) ,点 的坐标为 ;
(2)若点 为线段 上的一个动点,过点 作 轴,交反比例函数图象于点 ,求 面积的最大值.
甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:
(1)甲、乙两公司各有多少人?
(2)现甲、乙两公司共同使用这笔捐款购买 、 两种防疫物资, 种防疫物资每箱15000元, 种防疫物资每箱12000元.若购买 种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注 、 两种防疫物资均需购买,并按整箱配送).
如图,在四边形 中, ,对角线 的垂直平分线与边 、 分别相交于点 、 .
(1)求证:四边形 是菱形;
(2)若 , ,求菱形 的周长.
从2021年起,江苏省高考采用“ ”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.
(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是 ;
(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2”中选化学、生物的概率.