(本题9分)某中学开展“感恩父母”演讲比赛活动,八(1)、八(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示。
(1)根据下图,分别求出两班复赛的平均成绩和方差;
(2)根据(1)的计算结果,哪个班级的复赛成绩较好?为什么?
已知:一次函数y=3x-2的图象与某正比例函数图象的一个公共点的横坐标为1.
(1)求该正比例函数的解析式.
(2)将一次函数y=3x-2的图象向上平移4个单位长度,求平移后的图象与正比例函数图象的交点坐标.
(3)请直接写出一个同时满足如下条件的函数解析式:
①函数的图象能由一次函数y=3x-2的图象绕点(0,-2)旋转一定角度得到;
②函数的图象与(1)中所求正比例函数的图象没有公共点.
如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).
(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.
某医药研究所开发一种新药.在试验药效时发现,如果成人按规定剂量服用,那么服药2h后血液中含药量最高,达到每毫升6μg(1μg=10-3mg),接着逐步衰减,10h后血液中含药量为每毫升3μg.若每毫升血液中含药量y(μg)随时间x(h)的变化如图所示,则当成人按规定剂量服药后:
(1)分别求出0≤x≤2和x>2时,y与x之间的函数解析式;
(2)如果每毫升血液中含药量为4μg或4μg以上时药物对疾病的治疗是有效的,那么这个有效时间是多长?
为了保护学生的视力,课桌椅的高度都是按一定比例配套设计的.假设课桌的高度为ycm,椅子的高度(不含靠背)为xcm,且y是x的一次函数.下表列出了两套符合条件的课桌椅的高度:
![]() |
第一套 |
第二套 |
椅子的高度x/cm |
40.0 |
37.0 |
课桌的高度y/cm |
75.0 |
70.2 |
(1)请确定y关于x的函数解析式;
(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?请通过计算说明理由.
已知一次函数y=kx+b的图象经过点(3,-3),且与直线y=4x-3的交点在x轴上.
(1)求这个一次函数的解析式;
(2)此函数的图象经过哪几个象限?
(3)求此函数的图象与坐标轴围成的三角形的面积.