(本题8分)某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y元,其中A种产品生产件数是x件.
(1)写出y与x之间的函数关系式;
(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.
二次函数y=ax2+bx+c的部分对应值如下表:
x |
… |
-2 |
-1 |
0 |
1 |
2 |
3 |
… |
y |
… |
5 |
0 |
-3 |
-4 |
-3 |
0 |
… |
(1)二次函数图象所对应的顶点坐标为.
(2)当x=4时,y=.
(3)由二次函数的图象可知,当函数值y<0时,x的取值范围是.
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).
(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1;
(2)求点A旋转到点A1所经过的路线长.
如图,已知CD是Rt△ABC斜边上的高,AC=4,BC=3,计算cos∠BCD的值.
如图,已知⊙O的半径为5,弦AB=8,OC⊥AB于C,求OC的长.
如图,OABC是一个放在平面直角坐标系中的矩形,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=3,OC=4,平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线运动的时间为t(秒).
(1)写出点B的坐标;
(2)t为何值时,MN=AC;
(3)设△OMN的面积为S,求S与t的函数关系式,并写出t的取值范围;当t为何值时,S有最大值?并求S的最大值.