游客
题文

(本题12分)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶.供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.
探究
设行驶时间为t分.

(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t的函数关系式,并求出当两车相距的路程是400米时t的值;
(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.
发现
如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A.设CK=x米.
情况一:若他刚好错过2号车,便搭乘即将到来的1号车;
情况二:若他刚好错过1号车,便搭乘即将到来的2号车.
比较哪种情况用时较多.(含候车时间)
决策
已知游客乙在DA上从D向出口A走去,步行的速度是50米/分.当行进到DA上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.
(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;
(2)设PA=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?

科目 数学   题型 解答题   难度 困难
登录免费查看答案和解析
相关试题

【试题背景】已知:l ∥∥k,平行线l与与k之间的距离分别为123,且1 =3 = 1,2 =" 2" .我们把四个顶点分别在l、、k这四条平行线上的四边形称为“格线四边形”.
【探究1】(1)如图1,正方形为“格线四边形”,于点,的反向延长线交直线k于点. 求正方形的边长.
【探究2】(2)矩形为“格线四边形”,其长 :宽 =" 2" :1 ,则矩形的宽为.(直接写出结果即可)
【探究3】(3)如图2,菱形为“格线四边形”且∠=60°,△是等边三角形,于点, ∠=90°,直线分别交直线l、k于点.求证:
【拓 展】(4)如图3,l ∥k,等边三角形的顶点分别落在直线l、k上,于点,且="4" ,∠=90°,直线分别交直线l、k于点,点分别是线段上的动点,且始终保持=于点
猜想:在什么范围内,?直接写出结论。

如图1是立方体和长方体模型,立方体棱长和长方体底面各边长都为1,长方体侧棱长为2,现用60张长为6宽为4的长方形卡纸,剪出这两种模型的表面展开图,有两种方法:
方法一:如图2,每张卡纸剪出3个立方体表面展开图;
方法二:如图3,每张卡纸剪出2个长方体表面展开图(图中只画出1个).



(图1)(图2)(图3)


设用x张卡纸做立方体,其余卡纸做长方体,共做两种模型y个.
(1)在图3中画出第二个长方体表面展开图,用阴影表示;
(2)写出y关于x的函数解析式;
(3)设每只模型(包括立方体和长方体)平均获利为w(元),w满足函数,若想将模型作为教具卖出,且制作的长方体的个数不超过立方体的个数,则应该制作立方体和长方体各多少个,使获得的利润最大?最大利润是多少?

已知二次函数的图象过(0,-6)、(1,0)和(-2,-6)三点.


(1)求二次函数解析式;
(2)求二次函数图象的顶点坐标;
(3)若点A(m-2n,-8mn-10)在此二次函数图象上,求m、n的值.

如图,AB为⊙O的直径,点C为圆上一点,AD和过点C的切线互相垂直,垂足为点D,AD交⊙O于点E.

(1)求证:AC平分∠BAD;
(2)若CD=3,AC=6,求图中阴影部分面积.

如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.

(1)求B点到OP的距离;
(2)求滑动支架的长.
(结果精确到1cm.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin55°≈0.8,cos55°≈0.6,tan55°≈1.4)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号