(本题12分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作:在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.
(1)判断与推理:
①邻边长分别为2和3的平行四边形是________阶准菱形;
②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.
(2)操作、探究与计算:
①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;
②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.
如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.
(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);
(2)求△ACE的面积.
(1)计算: ;
(2)解分式方程: .
如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.
(1)求抛物线L的解析式;
(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.
如图(1),菱形ABCD对角线AC、BD的交点O是四边形EFGH对角线FH的中点,四个顶点A、B、C、D分别在四边形EFGH的边EF、FG、GH、HE上.
(1)求证:四边形EFGH是平行四边形;
(2)如图(2)若四边形EFGH是矩形,当AC与FH重合时,已知,且菱形ABCD的面积是20,求矩形EFGH的长与宽.
蔬菜经营户老王,近两天经营的是青菜和西兰花.
(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?
青菜 |
西兰花 |
|
进价(元/市斤) |
2.8 |
3.2 |
售价(元/市斤) |
4 |
4.5 |
(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)