在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
某校班际篮球联赛中,每场比赛都要胜负,每队胜1场得3分,负1场得1分,如果某班在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?
已知关于x,y的方程组的解为,求m,n的值;
化简:
计算:
抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点. (1)求点B及点D的坐标. (2)连结BD,CD,抛物线的对称轴与x轴交于点E. ①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标. ②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号