给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.
(1)点A的坐标为,则点
和射线OA之间的距离为________,点
和射线OA之间的距离为________;
(2)如果直线和双曲线
之间的距离为
,那么k= ;(可在图1中进行研究)
(3)点E的坐标为(1,),将射线OE绕原点O逆时针旋转60°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.
①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示)
②将射线OE,OF组成的图形记为图形W,抛物线与图形M的公共部分记为图形N,请直接写出图形W和图形N之间的距离.
在数列中,已知
.
(1)求数列的通项公式;
(2)求数列的前
项和
.
如图甲,在平面四边形ABCD中,已知,
,现将四边形ABCD沿BD折起,
使平面ABD平面BDC(如图乙),设点E、F分别为棱
AC、AD的中点.
(1)求证:DC平面ABC;
(2)求BF与平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦.
已知椭圆:
的长轴长是短轴长的
倍,
,
是它的左,右焦点.
(1)若,且
,
,求
、
的坐标;
(2)在(1)的条件下,过动点作以
为圆心、以1为半径的圆的切线
(
是切点),且使
,求动点
的轨迹方程.
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别
进行抽样检查,测得身高频数分布表如下表1、表2.表1:男生身高频数分布表
表2:女生身高频数分布表
(1)求该校男生的人数并完成下面频率分布直方图;
(2)估计该校学生身高(单位:cm)在的概率;
(3)在男生样本中,从身高(单位:cm)在的男生中任选3人,设
表示所选3人中身高(单位:cm)在
的人数,求
的分布列和数学期望.
已知函数,
.
(1)求函数的最大值和最小值;
(2)设函数在
上的图象与
轴的交点从左到右分别为M、N,图象的最高点为P,
求与
的夹角的余弦.