推理填空:
如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
因为EF∥AD,
所以∠2=____(____________________________)
又因为∠1=∠2
所以∠1=∠3(______________)
所以AB∥_____(_____________________________)
所以∠BAC+______=180°
(___________________________)
因为∠BAC=70°
所以∠AGD=_______.
(1) ;
(2) .
如图,已知一次函数 的图象是直线 ,设直线 分别与 轴、 轴交于点 、 .
(1)求线段 的长度;
(2)设点 在射线 上,将点 绕点 按逆时针方向旋转 到点 ,以点 为圆心, 的长为半径作 .
①当 与 轴相切时,求点 的坐标;
②在①的条件下,设直线 与 轴交于点 ,与 的另一个交点为 ,连接 交 轴于点 ,直线 过点 分别与 轴、直线 交于点 、 ,当 与 相似时,求点 的坐标.
如图,在平面直角坐标系 ,已知二次函数 的图象过点 ,顶点为 ,连接 、 .
(1)求二次函数的表达式;
(2)若 是 的中点,点 在线段 上,设点 关于直线 的对称点为 ,当 为等边三角形时,求 的长度;
(3)若点 在线段 上, ,点 、 在 的边上,且满足 与 全等,求点 的坐标.
如图,已知一次函数 的图象与 轴交于点 ,与反比例函数 的图象交于点 ,过点 作 轴于点 ,点 是该反比例函数图象上一点.
(1)求 的值;
(2)若 ,求一次函数 的表达式.
某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.
(1)求每个篮球和每个足球的售价;
(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?