(本小题满分12分)已知抛物线的焦点为,抛物线上存在一点到焦点的距离为,且点在圆上.(Ⅰ)求抛物线的方程;(Ⅱ)已知椭圆的一个焦点与抛物线的焦点重合,且离心率为.直线交椭圆于、两个不同的点,若原点在以线段为直径的圆的外部,求的取值范围.
设函数. (I)若是函数的极大值点,求的取值范围; (II)当时,若在上至少存在一点,使成立,求的取值范围.
已知数列中,是它的前项和,并且,. (Ⅰ)设,求证是等比数列(Ⅱ)设,求证是等差数列; (Ⅲ)求数列的通项公式.
已知函数在处取得极值. (Ⅰ)求实数的值; (Ⅱ)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围.
等差数列的各项均为正数,,前项和为,为等比数列, ,且. (Ⅰ)求与; (Ⅱ)求数列的前项和。
( 12分)在中,角所对的边分别为,满足,且的面积为.⑴求的值;⑵若,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号