设函数.
(I)若是函数
的极大值点,求
的取值范围;
(II)当时,若在
上至少存在一点
,使
成立,求
的取值范围.
(本小题满分14分)已知函数.
(1)设,且
,求θ的值;
(2)在△ABC中,AB=1,,且△ABC的面积为
,求sinA+sinB的值.
(本小题满分14分)如图,平面PAC⊥平面ABC,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,AB=BC=AC=4,PA=PC=2.求证:
(1)PA⊥平面EBO;
(2)FG∥平面EBO.
(本小题满分10分)选修4-5:不等式选讲
设函数,其中
.
(1)当时,求不等式
的解集;
(2)若不等式的解集为
,求
的值.
(本小题满分10分)选修4-4:坐标系与参数方程
已知极坐标的极点在平面直角坐标系的原点处,极轴与
轴的正半轴重合,且长度单位相同。直线
的极坐标方程为:
,点
,参数
.
(1)求点轨迹的直角坐标方程;
(2)求点到直线
距离的最大值.
(本小题满分10分)选修4-1:几何证明选讲
已知中,
,
是
外接圆劣弧
上的点(不与点
重合),延长
至
。
(1)求证:的延长线平分
;
(2)若,
中
边上的高为
,求
外接圆的面积。