(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线,直线
(
为参数)
写出曲线的参数方程,直线
的普通方程;
过曲线上任意一点
作与
夹角为30°的直线,交
于点
,求
的最大值与最小值.
已知椭圆的方程为
,其中
.
(1)求椭圆形状最圆时的方程;
(2)若椭圆最圆时任意两条互相垂直的切线相交于点
,证明:点
在一个定圆上.
如图,是以
为直径的半圆
上异于
、
的点,矩形
所在的平面垂直于半圆
所在的平面,且
.
(1)求证:;
(2)若异面直线和
所成的角为
,求平面
与平面
所成的锐二面角的余弦值.
已知函数,(
).
(1)若有最值,求实数
的取值范围;
(2)当时,若存在
、
,使得曲线
在
与
处的切线互相平行,求证:
.
某中学为丰富教工生活,国庆节举办教工趣味投篮比赛,有、
两个定点投篮位置,在
点投中一球得2分,在
点投中一球得3分.其规则是:按先
后
再
的顺序投
篮.教师甲在和
点投中的概率分别是
,且在
、
两点投中与否相互独立.
(1)若教师甲投篮三次,试求他投篮得分X的分布列和数学期望;
(2)若教师乙与甲在A、B点投中的概率相同,两人按规则各投三次,求甲胜乙的概率.
已知向量,
,函数
,
.
(1)求函数的图像的对称中心坐标;
(2)将函数图像向下平移
个单位,再向左平移
个单位得函数
的图像,试写出
的解析式并作出它在
上的图像.