已知椭圆的中心在原点
,焦点在
轴上,离心率为
,右焦点到右顶点的距离为
.
(1)求椭圆的标准方程;
(2)是否存在与椭圆交于
两点的直线
:
,使得
成立?若存在,求出实数
的取值范围,若不存在,请说明理由.
已知分别为
三个内角
的对边,
(1)求;(2)若
,求
的面积.
已知函数(
)
(1)若曲线在点
处的切线平行于
轴,求
的值;
(2)当时,若直线
与曲线
在
上有公共点,求
的取值范围.
已知函数,且当
时,
的最小值为2.
(1)求的值,并求
的单调增区间;
(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的
倍,再把所得图象向右平移
个单位,得到函数
,求方程
在区间
上的所有根之和.
已知函数满足对任意实数
都有
成立,且当
时,
,
.
(1)求的值;
(2)判断在
上的单调性,并证明;
(3)若对于任意给定的正实数,总能找到一个正实数
,使得当
时,
,则称函数
在
处连续。试证明:
在
处连续.
已知函数,
.
(1)若且
,试讨论
的单调性;
(2)若对,总
使得
成立,求实数
的取值范围.