已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.(1)求椭圆的标准方程;(2)是否存在与椭圆交于两点的直线:,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.
已知函数 (Ⅰ)若为的极值点,求实数的值; (Ⅱ)若的图象在点处的切线方程为,求在区间上的最大值;
在中,角、、所对的边分别是、、,向量,且与共线. (Ⅰ)求角的大小; (Ⅱ)设,求的最大值及此时角的大小.
已知函数,其中,是自然对数的底数若,且函数在区间内有零点,求实数的取值范围.
已知函数,其中是自然对数的底数. (Ⅰ)证明:是上的偶函数; (Ⅱ)若关于的不等式在上恒成立,求实数的取值范围; (Ⅲ)已知正数满足:存在,使得成立,试比较与的大小,并证明你的结论.
设函数(为常数,其中e是自然对数的底数) (Ⅰ)当时,求函数的极值点; (Ⅱ)若函数在内存在两个极值点,求k的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号