如图,已知BD平分∠ABF,且交AE于点D,
(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.
画图计算:在8×8的方格纸中有△ABC 若A点的坐标(﹣2,0),C点的坐标(0,4).
(1)在图中画出平面直角坐标系并写出B点的坐标.
(2)在图中画出△A′B′C′,使它与△ABC关于y轴对称,设小方格的边长为1,判断△A′B′C′的形状并求B′C′边上的高h的值.
如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.
写出同时具备下列两个条件的一次函数表达式(写出一个即可) .
(1)y随着x的增大而减小;
(2)图象经过点(1,﹣3).
江山实验中学为全体学生办理了“学生团体住院医疗保险”.保险公司按下表级距分段计算给付“住院医疗保险金”.
(1)小毛同学在一次打篮球时不慎意外受伤,并住院治疗,总共化去医疗费用3500元,问小毛同学可以收到保险公司的保险金有多少元?
(2)小蔡同学也生病住院,住院治疗期间,老师同学都去探望.出院后,保险公司根据他所化去的住院治疗费用给他送来了3120元保险金,你能知道小蔡共化去多少元住院治疗费吗?
(3)刘倩同学因病住院,除去保险公司给付的“住院医疗保险金”外,刘倩的父母还共付医疗费3 000元.请问保险公司为刘倩同学给付了保险金多少元?
已知数轴上有A、B、C三点,分别代表﹣24,﹣10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.
(1)甲、乙多少秒后相遇?
(2)甲出发多少秒后,甲到A、B、C三点的距离和为40个单位?
(3)当甲到A、B、C三点的距离和为40个单位时,甲调头返回,当甲、乙在数轴上再次相遇时,相遇点表示的数是 .