某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.
问:今年第一季度生产总量是多少台机器?m的值是多少?
在△ABC中,中线BE、CF交于点O,M、N分别是BO、CO中点,则四边形MNEF是什么特殊四边形?并说明理由
选择合适的方法
(1)2
(2)
(3)
(4)
(5)
计算:
(1)(因式分解法)
(2)(公式法)
(3)(配方法)
(4)(因式分解法)
如图,已知A、B、C、D为矩形的四个顶点,AB=16㎝,AD=6㎝,动点P、Q分别从点A、C同时出发,点P以3㎝/s的速度向点B移动,一直到点B为止,点Q以2㎝/s的速度向点D移动.问
(1)P、Q两点从出发开始几秒时,点P点Q间的距离是10厘米.
(2)P、Q两点间距离何时最小。
对称轴为直线 的抛物线y =x2+bx+c,与
轴相交于
,
两点,其中点
的坐标为(
3,0).
(1)求点的坐标.
(2)点是抛物线与
轴的交点,点
是线段
上的动点,作
轴交抛物线于点
,求线段
长度的最大值.