游客
题文

如图,二次函数的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.

(1)求二次函数的解析式;
(2)如图1,当△BPQ为直角三角形时,求t的值;
(3)如图2,当时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.

先化简,然后从中选取一个你认为合适的数作为x的值代入求值.

如图,已知直线y=x+4与x轴、y轴分别相交于点A、B,点M是线段AB(中点除外)上的动点,以点M为圆心,OM的长为半径作圆,与x轴、y轴分别相交于点C、D.
(1)设点M的横坐标为a,则点C的坐标为,点D的坐标为(用含有a的代数式表示);
(2)求证:AC=BD;
(3)若过点D作直线AB的垂线,垂足为E.
①求证: AB=2ME;
②是否存在点M,使得AM=BE?若存在,求出点M的坐标;若不存在,请说明理由.

联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.
⑴如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?
⑵如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?

如图,AB是⊙O的直径,点C在BA的延长线上,CA=AO,点D在⊙O上,∠ABD=30°.

⑴求证:CD是⊙O的切线;
⑵若点P在直线AB上,⊙P与⊙O外切于点B,与直线CD相切于点E,设⊙O与⊙P的半径分别为r与R,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号