阅读下列材料解决问题:
将下图一个正方形和三个长方形拼成一个大长方形,观察这四个图形的面积与拼成的大长方形的面积之间的关系.
∵用间接法表示大长方形的面积为:x2+px+qx+pq,用直接法表示面积为:(x+p)(x+q)
∴x2+px+qx+pq=(x+p)(x+q)
∴我们得到了可以进行因式分解的公式:x2+(p+q )x+pq=(x+p)(x+q)
(1)运用公式将下列多项式分解因式:
①x2+6x+8 ②y2+7y-18
(2)如果二次三项式“a2+□ab+□b2”中的“□”只能填入有理数2、3、4(两个“□”内数字可以相同),并且填入后的二次三项式能进行因式分解,请你写出所有的二次三项式及因式分解的结果.
如图,在四边形ABCD中,∠ADC=∠B=90°,DE⊥AB,垂足为E,且DE=EB=5,请用割补(旋转图形)的方法求四边形ABCD的面积.
在某中学举行的电脑知识竞赛中,将参赛学生的成绩(得分均为整数)进行整理后分成五组,绘制出频数分布直方图,已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.
(1)求第二小组的频率,并补全这个频数分布直方图;
(2)求参赛的学生的优秀率(成绩≥80为优秀)和及格率(成绩≥60为及格);
(3)参赛学生成绩的中位数应落在第几小组内?(不必说明理由)
(4)请你评价一下这次竞赛的成绩.
甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
(1)请填写下表:
平均数 |
方差 |
中位数 |
命中9环及以上的次数 |
|
甲 |
7 |
1.2 |
1 |
|
乙 |
5.4 |
(2)请从下列四个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看;
②从平均数和中位数相结合看(分析谁的成绩好些);
③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);
④从折线图上两人射击命中环数的走势看(分析谁更有潜力).
甲、乙两位同学参加奥赛班11次测验成绩分布如图所示:(单位:分)
(1)他们的平均成绩分别是多少?
(2)他们测验成绩的方差、极差是多少?
(3)现要从中选出一人参加比赛,历届比赛表明,成绩达到98分以上才可进入决赛,你认为应选谁参加这次比赛,为什么?
(4)分析两位同学的成绩各有何特点?并对两位同学各提一条学习建议.
平面直角坐标中,对称轴平行于y轴的抛物线经过原点O,其顶点坐标为(3,);Rt△ABC的直角边BC在x轴上,直角顶点C的坐标为(
,0),且BC=5,AC=3(如图1).
图1图2
(1)求出该抛物线的解析式;
(2)将Rt△ABC沿x轴向右平移,当点A落在(1)中所求抛物线上时Rt△ABC停止移动.D(0,4)为y轴上一点,设点B的横坐标为m,△DAB的面积为s.
①分别求出点B位于原点左侧、右侧(含原点O)时,s与m之间的函数关系式,并写出相应自变量m的取值范围(可在图1、图2中画出探求);
②当点B位于原点左侧时,是否存在实数m,使得△DAB为直角三角形?若存在,直接写出m的值;若不存在,请说明理由.