如图,在平面直角坐标系中.顶点为(﹣4,﹣1)的抛物线交y轴于点A(0,3),交x轴于B,C两点.
(1)求此抛物线的解析式;
(2)已知点P是抛物线上位于B,C两点之间的一个动点,问:当点P运动到什么位置时,四边形ABPC的面积最大?并求出此时四边形ABPC的面积.
(3)过点B作AB的垂线交抛物线于点D,是否存在以点C为圆心且与线段BD和抛物线的对称轴l同时相切的圆?若存在,求出圆的半径;若不存在,请说明理由.
化简:(1);
(2)
计算:(1)18-6÷(-3)×2
(2)
(3)
如图(1),在梯形ABCD中,AD∥BC,且AD=4cm,AB=6cm,BC=12cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动. 当Q点到达B点时,动点P、Q同时停止运动. 设点P、Q同时出发,并运动了t秒.
(1)求梯形ABCD的面积.
(2)当t为何值时,四边形PQCD成为平行四边形?
(3)是否存在t,使得P点在线段DC上,且PQ⊥DC(如图(2)所示)?若存在,求出此时t的值,若不存在,说明理由.
如图,点O是等边△ABC内一点,∠AOB=110º,∠BOC=,将△BOC绕点C按顺时针方向旋转60º得△ADC,连接OD.
(1)△COD是什么三角形?说明理由;
(2)若AO=,AD=
,OD=
(
为大于1的整数),求
的度数;
(3)当为多少度时,△AOD是等腰三角形?
如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E.
(1)E是CF的中点吗?试说明理由;
(2)试说明:∠B=2∠BCF.