游客
题文

如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连结DE并延长交AB于点F,连结BE.

(1)如图①,求证:∠AFD=∠EBC;
(2)如图②,若DE=EC且BE⊥AF,求∠DAB的度数;
(3)若∠DAB=90°且当△BEF为等腰三角形时,求∠EFB的度数(只写出条件与对应的结果)

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

基本事实:若(a>0且a≠1,m、n是正整数),则m=n.
试利用上述基本事实分别求下列各等式中x的值:
;②

(本题6分)AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?
解:BE∥DF.
∵AB⊥BC,
∴∠ABC=°,
即∠3+∠4=°.
又∵∠1+∠2=90°,
且∠2=∠3,
=
理由是:________________.
∴BE∥DF.
理由是:________________.

(本题6分)如图,在△ABC中,∠BAC是钝角,请画出AB边上的高CD,BC边上的中线AE,并将△ABC沿AE方向平移AE的长度.(请保留作图痕迹,)

化简求值:已知,求代数式的值.

(1)
(2)
(3)
(4)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号