游客
题文

(1)计算:(1-0-tan60°+(-1   
(2)解方程组:

科目 数学   题型 解答题   难度 较易
知识点: 二元一次不定方程的应用 计算器—基础知识
登录免费查看答案和解析
相关试题

如图,直线 y = 1 2 x + 1 x 轴交于点 A ,与 y 轴交于点 B ,抛物线 y = x 2 + bx + c 经过 A B 两点.

(1)求抛物线的解析式;

(2)点 P 是第一象限抛物线上的一点,连接 PA PB PO ,若 ΔPOA 的面积是 ΔPOB 面积的 4 3 倍.

①求点 P 的坐标;

②点 Q 为抛物线对称轴上一点,请直接写出 QP + QA 的最小值;

(3)点 M 为直线 AB 上的动点,点 N 为抛物线上的动点,当以点 O B M N 为顶点的四边形是平行四边形时,请直接写出点 M 的坐标.

已知, ΔABC 为直角三角形, ACB = 90 ° ,点 P 是射线 CB 上一点(点 P 不与点 B C 重合),线段 AP 绕点 A 顺时针旋转 90 ° 得到线段 AQ ,连接 QB 交射线 AC 于点 M

(1)如图①,当 AC = BC ,点 P 在线段 CB 上时,线段 PB CM 的数量关系是  

(2)如图②,当 AC = BC ,点 P 在线段 CB 的延长线时,(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由.

(3)如图③,若 AC BC = 5 2 ,点 P 在线段 CB 的延长线上, CM = 2 AP = 13 ,求 ΔABP 的面积.

如图,某巡逻艇计划以40海里 / 时的速度从 A 处向正东方向的 D 处航行,出发1.5小时到达 B 处时,突然接到 C 处的求救信号,于是巡逻艇立刻以60海里 / 时的速度向北偏东 30 ° 方向的 C 处航行,到达 C 处后,测得 A 处位于 C 处的南偏西 60 ° 方向,解救后巡逻艇又沿南偏东 45 ° 方向航行到 D 处.

(1)求巡逻艇从 B 处到 C 处用的时间.

(2)求巡逻艇实际比原计划多航行了多少海里?(结果精确到1海里).

(参考数据: 3 1 . 73 , 6 2 . 45 )

某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于 65 % ,市场调研发现,保温饭盒每天的销售数量 y (个 ) 与销售单价 x (元 ) 满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率 = 利润 成本 × 100 \ % )

(1)求 y x 之间的函数关系式;

(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?

如图, ΔABC 中, AB = AC ,点 E 是线段 BC 延长线上一点, ED AB ,垂足为 D ED 交线段 AC 于点 F ,点 O 在线段 EF 上, O 经过 C E 两点,交 ED 于点 G

(1)求证: AC O 的切线;

(2)若 E = 30 ° AD = 1 BD = 5 ,求 O 的半径.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号