如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,-1).
(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;
(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;
(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.
如图,已知 、 为 的两条直径, 为切线,过 上一点 作 于 ,连接 并延长交 于点 ,连接 .
(1)求证: .
(2)设 为点 关于 对称点,连接 、 ,如果 , 的半径为3,求 的值.
如图,函数 的图象与双曲线 相交于点 和点 .
(1)求双曲线的解析式及点 的坐标;
(2)若点 在 轴上,连接 , ,求当 的值最小时点 的坐标.
为了吸引游客,某景区通过加强对服务人员的培训、增建索道和开发新景点等措施,对景区品质进行提档升级,升级后游客人数平均每月是升级前的1.1倍还多3000人,且在 个月时间内,升级前只能达36万游客,而升级后可达43.2万游客.
(1)问升级前和升级后平均每月各有多少万游客?
(2)现在景区内去极险峰的索道票价为80元 张,为了确保景区索道运营有利润,又要保障游客安全,需使每天卖出的索道票总金额超过2万元而票数不超过1000张,问景区每天卖出的索道票数的范围.
为了解学生的课外阅读情况,某市教育局在某校学生中随机抽取了100名学生进行调研,获得了他们一周的课外阅读时间的相关数据,通过整理得到如下的频数分布直方图.
(1)已知阅读时间在 之间的学生的频率为0.4,求 、 的值.
(2)在样本数据中,从阅读时间在 之间与在 之间的两个时间段内的学生中随机选取2名学生,请用列举法求出任选的2人中恰有1人一周阅读时间在 之间的概率.
(3)该校规定一周课外阅读时间在10小时及以上的学生,可申请“博闻阅读”项目的资助,如果该校共有学生3000名,用样本估计该校可申请“博闻阅读”项目资助的学生人数.
如图,在平行四边形 中, 、 分别是 、 的中点, ,垂足为 , ,垂足为 , 与 相交于点 .
(1)证明: .
(2)若 ,求四边形 的对角线 的长.