游客
题文

如图,在矩形ABCD中,AB=9,AD=12.动点E从点B出发,沿线段BC(不包括端点B、C)以每秒2个单位长度的速度,匀速向点C运动;动点F从点C出发,沿线段CD(不包括端点C、D)以每秒1个单位长度的速度,匀速向点D运动;点E、F同时出发,同时停止.连接AF并延长交BC的延长线于点M,再把AM沿AD翻折交CD延长线于点N,连接MN.设运动时间为t秒.

(1)当t为何值时,△ABE∽△ECF;
(2)在点E运动的过程中是否存在某个时刻使AE⊥AN?若存在请求出t的值,若不存在请说明理由;
(3)在运动的过程中,△AMN的面积是否变化?如果改变,求出变化的范围;如果不变,求出它的值.

科目 数学   题型 解答题   难度 较易
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

将下列各数在数轴上表示出来: -2, , 3, , -1.5.

把下列各数分别填入相应的大括号里:
﹣5.13, 5,﹣|﹣2|, +41, -, 0,-(+0.18),
正数集合{};
负数集合{};
整数集合{};
分数集合{}.

在如图所示的平面直角坐标系中,直线AB:y=k1x+b1与直线AD:y=k2x+b2相交于点A(1,3),且点B坐标为(0,2),直线AB交x轴负半轴于点C,直线AD交x轴正半轴于点D.

(1)求直线AB的函数解析式;
(2)根据图象直接回答,不等式k1x+b1<k2x+b2的解集;
(3)若△ACD的面积为9,求直线AD的函数解析式;
(4)若点M为x轴一动点,当点M在什么位置时,使AM+BM的值最小?求出此时点M的坐标.

已知:点O到△ABC的两边AB、AC所在直线的距离OE、OF相等,且OB=OC.
(1)如图,若点O在边BC上,求证:AB=AC;

(2)如图,若点O在△ABC的内部,则(1)中的结论还成立吗?若成立,请证明;若不成立,说明理由;

(3)若点O在△ABC的外部,则(1)的结论还成立吗?请画图表示.

在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题:

(1)这辆汽车的往、返速度是否相同?请说明理由;
(2)求返程中y与x之间的函数表达式;
(3)求这辆汽车从甲地出发4h时与甲地的距离.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号