有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.
(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果.
(Ⅱ)求摸出的两个球号码之和等于5的概率.
(1)通分:,
;(2)通分:
,
.
(1)约分:;(2)约分:
.
已知:△ABC中,AE平分∠BAC。
(1)如图①AD⊥BC于D,若∠C =70°,∠B =30°,则∠DAE=;
(2)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F作FG⊥BC于G,且∠B=40°,∠C=80°,求∠EFG的度数;
(3)在(2)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG的角度大小发生改变吗?说明理由.
如图,梯形ABCD是由三个直角三角形拼成的,各直角边的长度如图所示。
(1)请你运用两种方法计算梯形ABCD的面积;
(2)根据(1)的计算,探索三者之间的关系,并用式子表示出来。
如图,AB∥CD,AE交CD与点C,DEAE,垂足为E,
, 求
的度数。