游客
题文

如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)
(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD     ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是     
(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;
(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).

科目 数学   题型 解答题   难度 较易
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

如图,平行四边形ABCD的对角线AC的延长线上取两点E、F,使EA=CF.求证:四边形EBFD是平行四边形.

请用适当的方法解下列方程:
(1)2(x-4)2=18
(2)4x2-4x-3=0

(1)
(2)

如图,凸四边形ABCD中,点E在边CD上,连接AE、BE.给出下列五个关系式:①AD∥BC;②DE=EC; ③∠1=∠2;④∠3=∠4;⑤AD+BC="AB" .将其中的三个关系式作为已知条件、另外两个关系式作为结论,可以构成一些命题(下面各小题的命题须符合此要求).
(1)共计能够成个命题;
(2)写出三个真命题:
①如果,那么
②如果,那么
③如果,那么.
请选择上述三个命题中的一个写出它是真命题的理由:
证明:我选择证明命题(填序号),理由如下:

(第28题图)
(3)请写出一个假命题(不必说明理由):
如果,那么.

(1)探究新知:如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD的位置关系,并说明理由.

(2)结论应用:如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F. 试证明:MN∥EF.
(3)变式探究:如图3,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,过点M作MG⊥x轴,过点N作NH⊥y轴,垂足分别为E、F、G、H. 试证明:EF ∥GH.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号