如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.
(1)求正方形ABCD的周长;
(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.
(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.
①求证:BH⊥DG;
②当AE=时,求线段BH的长(精确到0.1).
(本小题满分8分)如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BP=BQ,连结CQ.
(1)观察并猜想AP与CQ之间的大小关系,并说明理由.
(2)若PA=3,PB=4,PC=5,连结PQ,判断△PQC的形状并说明理由.
(本小题满分8分)如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.
(本小题满分6分)如图,已知AB∥CD,若∠A=20°,∠E=35°,求∠C.
(本小题满分6分)解不等式组:,并在数轴上表示出不等式组的解集.
(本题9分)平安加气站某日7:00前的储气量为10000立方米.加气站在加气过程中每把加气枪均以每小时200立方米的速度为汽车加气.设加气站从7:00开始,加气时间为x(小时)(加气期间关闭加气枪的时间忽略不计).另外,加气站在不同时间段加气枪的使用数量如下:
(1)7:30时加气站的储气量为立方米;
(2)当x>1时,试用含x的代数式表示加气站加气x小时后的储气量(答案要求化简);
(3)若每辆车的加气量均为20立方米,试说明前70辆车能否在当天8:30
之前加完气?若能,请加以说明;若不能,则8:00以后还需添加几把枪加气才能保证在当天8:30恰好加完气?