游客
题文

△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.将△ABC向左平移3个单位长度,再向下平移2个单位长度得到△A1B1C1

(1)写出△ABC的顶点坐标;
(2)请在图中画出△A1B1C1

科目 数学   题型 解答题   难度 中等
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP. 将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点E、F.
(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在 关系(填“相似”或“全等”),并说明理由;
(2)如图2,设∠ABP="β" . 当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图3,当α=60°时,点E、F与点B重合. 已知AB=4,设DP=x,△A1BB1的面
积为S,求S关于x的函数关系式.

将两块全等的三角板如图①摆放,其中∠ACB=∠DCE=90°,∠A=∠D=45°,将图①中的△DCE顺时针旋转得图②,点P是AB与CE的交点,点Q是DE与BC的交点,在DC上取一点F,连接BE、FP,设BC=1,当BF⊥AB时,求△PBF面积的最大值。

如图,菱形ABCD中,边长为2,∠B=60°,将△ACD绕点C旋转,当AC(即A′C)与AB交于一点E,CD(即CD′)同时与AD交于一点F时,点E,F和点A构成△AEF。试探究△AEF的周长是否存在最小值,如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值。

如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线经过A、B两点。若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连结PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积。

如图,矩形ABCD中,BC=2,点P是线段BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,平移线段PE得到CF,连接EF。问:四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号