如图,平地上一幢建筑物AB与铁塔CD相距40m,在建筑物的顶部测得铁塔底部的俯角为37°,测得铁塔顶部的仰角为26.6°,求铁塔的高度.
(参考数据:sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
如图所示,在 中, 为 边上一点, 是方程 的一个较大的根,求 的长
如图,已知 中, 是 的外接圆, 是 边上的高, 是 的垂心,连接 ,连接 并延长交 于点 ,交 于点 ,求证:
(1) ;
(2) 等于 外接圆半径;
(3) .
如图,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过 两点.
(1)求抛物线的解析式;
(2)如图,点 是直线 上方抛物线上的一动点,当 面积最大时,请求出点 的坐标和 面积的最大值?
如图,点 是等边三角形 内一点,且 ,若将 绕着点 逆时针旋转后得到 .
(1)求点 与点 之间的距离;
(2)求 的度数.
已知 是关于 的一元二次方程 的两个实数根,使得 成立.求实数 的所有可能值.