用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:
探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.
(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;
(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.
探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.
(本题10分)
如图1,MA1∥NA2,则∠A1+∠A2=______________________度。
如图2,MA1∥NA3,则∠A1+∠A2+∠A3=________________________度。
如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=__________________度。
如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=_____________________度。从上述结论中你发现了什么规律?
如图5,MA1∥NAn,则∠A1+∠A2+∠A3+……+∠An=______________________度。
(本题8分)在直角坐标系中,描出A(2,
3)、B(4,
3)、C(3,2)、D(
3,2)四点,并指出连接A、B、C、D、A后的图形是什么图形。并计算其面积。
请你在下图中建立适当的直角坐标系,并写出各地点的坐标。。
(本题6分)如图,已知F是⊿ABC的边BC的延长线上的一点,DF⊥AB于D,且∠A = 56°,∠F = 31°,求∠ACB的度数。
(本题6分)如图,在△ABC中,∠BAC=60°,∠B=45°,AD是△ABC的一条角平分线,求∠ADC的度数?