甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.
请结合图象信息解答下列问题:
(1)直接写出a的值,并求甲车的速度;
(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;
(3)乙车出发多少小时与甲车相距15千米?直接写出答案.
在直角三角形中,∠ACB=90°,CD是AB边上的高,AB=10cm,BC=8cm,AC=6cm.
(1)△ABC的面积;
(2)求CD的长?
(3)若△ABC的边AC上的中线是BE,求△ABE的面积.
如图所示的直角坐标系中,四边形的四个顶点坐标分别是A(0,0)、B(9,0)、C(7,5)、D(2,7),求这个四边形的面积.
如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=150°,求∠EDF的度数.
已知,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D,证明:β=2α.
如图是图形的操作过程(四个矩形水平方向的边长均为a,竖立方向的边长均为b):将线段A1A2向右平移1个单位得到B1B2,得到封闭图形A1A2B2B1[即阴影部分如图(1)];将折线A1A2A3向右平移1个单位得到B1B2B3,得到封闭图形A1A2A3B3B2B1[即阴影部分如图(2)].
(1)在图(3)中,请你类似地画出一条有两个折点的直线,同样向右平移1个单位,从而得到1个封闭图形,并画出阴影.
(2)请你分别写出上述三个阴影部分外的面积S1=,S2=,S3=.
(3)联想与探索:如图(4),在一矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位).请你猜想空白部分草地面积是多少?
![]() |