如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y轴于点D,线段OA,OC的长是一元二次方程x2﹣12x+36=0的两根,BC=4,∠BAC=45°.
(1)求点A,C的坐标;
(2)反比例函数y=的图象经过点B,求k的值;
(3)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请写出满足条件的点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.
如图所示,一段街道的两边缘所在直线分别为AB,PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N.小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等候小亮.
(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出);
(2)已知:MN=20m,MD=8m,PN=24m,求(1)中的点C到胜利街口的距离CM.
先化简,再求值:(+
)÷
,其中x满足x2+x﹣2=0.
已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.
(1)求k的取值范围;
(2)若|x1+x2|=x1x2﹣1,求k的值.
若,y=
,求x2﹣xy+y2的值.
(1)计算:|﹣2|﹣
×tan60°+2cos30°+(
)﹣1
(2)解方程:2x2﹣5x+1=0.