已知函数(为实数).(Ⅰ)当时,求函数的图象在点处的切线方程;(Ⅱ)设函数(其中为常数),若函数在区间上不存在极值,且存在满足,求的取值范围;(Ⅲ)已知,求证:.
(本题8分)已知函数. (1)用单调性定义证明函数在上是减函数; (2)判断在上的单调性(无需证明); (3)若函数在上的值域是,求的最大值和最小值.
(本题8分)已知函数经过点. (1)求的值; (2)画出函数图象,并写出该函数在上的单调区间.
(本题6分) (1)化简 ; (2)计算
(本题6分)已知集合,. 求:(1);(2).
(本小题满分10分)如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,设CD=2x,梯形ABCD的周长为y. (1)求出y关于x的函数f(x)的解析式; (2)求y的最大值,并指出相应的x值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号