如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.
(1)在运动过程中,求P,Q两点间距离的最大值;
(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;
(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时的t值;若不存在,请说明理由(≈2.24,结果保留一位小数)
已知:如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.
求证:BE=CF.
解不等式组:
,抛物线交x轴于点Q、M,交y轴于点P,点P关于x轴的对称点为N。
(1)求点M、N的坐标,并判断四边形NMPQ的形状;
(2)如图,坐标系中有一正方形ABCD,其中AB=2cm且CD⊥x轴,CD的中点E与Q点重合,正方形ABCD以1cm/s的速度沿射线QM运动,当正方形ABCD完全进入四边形QPMN时立即停止运动.
①当正方形ABCD与四边形NMPQ的交点个数为2时,求两四边形重叠部分的面积y与运动时间t之间的函数关系式,并写出自变量t的取值范围;
②求运动几秒时,重叠部分的面积为正方形ABCD面积
的一半.
两城市之间开通了动车组高速列车.已知每隔2 h有一列速度相同的动车组列车从甲城开往乙城.如图,OA是第一列动车组列车离开甲城的路程s(km)与运行时间t(h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(km)与运行时间t(h)的函数图象.请根据图中的信息,解答下列问题:
(1)从图象看,普通快车发车时间比第一列动车组列车发车时间1h(填“早”或“晚”),点B的纵坐标600的实际意义是;
(2)请直接在图中画出第二列动车组列车离开甲城的路程s(km)与时间t(h)的函数图象;
(3)若普通快车的速度为100 km/h,
①求BC的表达式,并写出自变量的取值范围;
②第二列动车组列车出发多长时间后与普通快车相遇?
③请直接写出这列普通快车在行驶途中与迎面而来的
相邻两列动车组列车相遇的时间间隔.
,已知A(-4,0),B(-1,4), 将线段AB绕点O,顺时针旋转90°,得到线段A′B′.
(1)求直线BB′的解析式;
(2)抛物线y1=ax2-19cx+16c经过A′,B′两点,求抛物线的解析式
并画出它的图象;
(3)在(2)的条件下,若直线A′B′的函数解析式为y2=mx+n,观察图
象,当y1≥y2时,写出x的取值范围.