游客
题文

问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.

[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌           ,得EH=ED.
在Rt△HBE中,由       定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是                         
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.

科目 数学   题型 解答题   难度 中等
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?

下图的数阵是由一些奇数排成的.

(1)图框中的四个数有什么关系?(设框中第一行第一个数为
(2)若这样框出的四个数的和是200,求这四个数;
(3)是否存在这样的四个数,它们的和为420,为什么?

有20箱橘子,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:

(1)20箱橘子中,最重的一箱比最轻的一箱多重多少千克?
(2)与标准重量比较,20箱橘子总计超过或不足多少千克?
(3)若橘子每千克售价2.6元,则出售这20箱橘子可卖多少元?(结果保留整数)

有这样一道题:“计算的值,其中” .甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果?

如果方程的解与方程的解相同,求式子的值 .

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号