已知抛物线与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).
(1)求抛物线的函数表达式;
(2)求直线BC的函数表达式和∠ABC的度数;
(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标.
如图,已知△ABC中,AD是高,AE是角平分线.
(1)若∠B=20°,∠C=60°,则∠EAD=_______°;
(2)若∠B=a°,∠C=b°(b>a),试通过计算,用a、b的代数式表示∠EAD的度数;
(3)特别地,当△ABC为等腰三角形(即∠B=∠C)时,请用一句话概括此时AD和AE的位置关系:______________________________.
从三个多项式:,
,
中选择适当的两个进行加法运算,并把结果因式分解.
在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)
如图,已知AB∥CD,BE、CF分别平分∠ABC和∠DCB,求证:BE∥CF.
证明:
∵AB∥CD,(已知)
∴∠_____=∠_____.()
∵,(已知)
∴∠EBC=∠ABC.(角的平分线定义)
同理,∠FCB=.
∴∠EBC=∠FCB.(等式性质)
∴BE∥CF.()
化简求值:,其中
.
因式分解(本题共2小题,每小题4分,共8分)
(1)a2 (x −y) + b2 (y −x)(2)x4 − 18x2 + 81