某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:
(1)填空:乙的速度v2= 米/分;
(2)写出d1与t的函数关系式:
(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?
(1)解方程;(2)求不等式组
的整数解.
(1)计算;
(2)先化简,再求值:其中
.
如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
宝胜电缆厂物流部门的快递车和货车每天往返于A、B两地,快递车比货车多往返一趟.下图表示快递车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.
(1)请在图中画出货车距离A地的路程y(千米)与所用时间x(时)的函数图象;
(2)两车在途中相遇了次(直接写出答案);
(3)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时?
在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,O为AB上一点,OA=,以O为圆心,OA为半径作圆.
(1)试判断⊙O与BC的位置关系,并说明理由;
(2)若⊙O与AC交于另一点D,求CD的长.