游客
题文

(本题14分)如下图,在三棱锥中,分别是的中点,,

(1)求证:平面
(2)求异面直线所成角的余弦值;
(3)求点到平面的距离.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

设函数.
(1)求不等式的解集
(2)若存在实数,使得成立,求实数的取值范围.

已知在平面直角坐标系中,圆的方程为.以原点为极点,以轴正半轴为极轴,且与直角坐标系取相同的单位长度,建立极坐标系,直线的极坐标方程为
(1)求直线的直角坐标方程和圆的参数方程;
(2)求圆上的点到直线的距离的最小值.

若二阶矩阵满足:.
(1)求二阶矩阵
(2)若曲线在矩阵所对应的变换作用下得到曲线,求曲线的方程.

已知函数,且在点
处的切线方程为.
(1)求的值;
(2)若函数在区间内有且仅有一个极值点,求的取值范围;
(3)设为两曲线的交点,且两曲线在交点处的切线分别为.若取,试判断当直线轴围成等腰三角形时值的个数并说明理由.

若函数,非零向量,我们称为函数的“相伴向量”,为向量的“相伴函数”.
(1)已知函数的最小正周期为,求函数的“相伴向量”;
(2)记向量的“相伴函数”为,将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象上所有点向左平移个单位长度,得到函数,若,求的值;
(3)对于函数,是否存在“相伴向量”?若存在,求出“相伴向量”;
若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号