如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,判断△ABC和△DEF是否相似,并说明理由;
如图1,在平面直角坐标系中,抛物线(
)经过点
,顶点为
.
(1)求抛物线的解析式;
(2)如图2,先将抛物线向上平移使其顶点在原点
,再将其顶点沿直线
平移得到抛物线
,设抛物线
与直线
交于
、
两点,求线段
的长.
(3)在图1中将抛物线绕点
旋转
后得到抛物线
,直线
总经过一个定点
,若过定点
的直线
与抛物线
只有一个公共点,求直线
的解析式.
(本题10分)如图①,在Rt△ABC中,∠ACB-90°,AC=BC,CD⊥AB于点D,(1)把Rt△DBC绕点D顺时针旋转45°,点C的对应点为E,点B的对应点为F,请画出△EDF,连接AE、BE,并求出∠AEB的度数。
(2)如图,把
绕点
顺时针旋转
度(
),点
的对应点为
,点
的对应点为
,连接
,求出
的度数,并写出线段
、
与
之间的数量关系,不证明。(2+3=5分)
(3)如图在(2)的条件下,连接
交
于点
,若
,
,则
=_____________.(直接写出结果,不用证明)
武汉某公司策划部进行调查后发现:如果单独投资A种产品,则所获利润(万元)与投资金额
(万元)之间的关系图像如图1所示;如果单独投资B种产品,则所获利润
(万元)与投资金额
(万元)之间的关系图像如图2所示.
(1)请分别求出、
与
之间的函数表达式;
(2)若公司计划A、B两种产品共投资10万元,请你帮助该公司设计一个能获得最大利润的投资方案,并求出此方案所获得的最大利润.
如图,⊙O的直径AB为10,弦BC为6,D、E分别为ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.
(1)求AC、AD的长;
(2)试判断直线PC与⊙O的位置关系,并说明理由;
(3)直接写出CD的长为____________.