四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:
(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;
(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
已知关于 的一元二次方程 有实数根.
(1)求 的取值范围;
(2)如果方程的两个实数根为 , ,且 ,求 的取值范围.
已知 和 位置如图所示, , , .
(1)求证: ;
(2)求证: .
在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.
如图,以菱形 对角线交点为坐标原点,建立平面直角坐标系, 、 两点的坐标分别为 , 、 ,直线 交 于 ,动点 从点 出发,以每秒2个单位的速度沿着 的路线向终点 匀速运动,设 的面积为 ,点 的运动时间为 秒.
(1)求直线 的解析式;
(2)求 与 之间的函数关系式,并写出自变量 的取值范围;
(3)当 为何值时, ?并求出此时直线 与直线 所夹锐角的正切值.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,且此抛物线的顶点坐标为 .
(1)求此抛物线的解析式;
(2)设点 为已知抛物线对称轴上的任意一点,当 与 面积相等时,求点 的坐标;
(3)点 在线段 上,当 与 轴垂直时,过点 作 轴的垂线,垂足为 ,将 沿直线 翻折,使点 的对应点 与 、 、 处在同一平面内,请求出点 坐标,并判断点 是否在该抛物线上.