阅读下列材料,然后解答后面的问题.
我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.
例:由2x+3y=12,得,(x、y为正整数)
∴,解得0<x<6.
又为正整数,则
为正整数.
由2与3互质,可知:x为3的倍数,从而x=3,代入.
∴2x+3y=12的正整数解为
问题:
(1)请你写出方程2x+y=5的一组正整数解: ;
(2)若为自然数,则满足条件的x值有 个;
A.2 | B.3 | C.4 | D.5 |
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?
如图,已知A(﹣4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.
(1)求C点坐标及直线BC的解析式;
(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;
(3)现将直线BC绕B点旋转与抛物线相交与另一点P,请找出抛物线上所有满足到直线AB距离为的点P.
(1)分解因式:;
(2)先化简,再求值:,其中
.
图中折线ABC表示从甲地向乙地打长途电话时所需付的电话费y(元)与通话时间t(分钟)之间的关系图像.
(1)从图像知,通话2分钟需付的电话费是元;
(2)当t≥3时求出该图像的解析式(写出求解过程);
(3)通话7分钟需付的电话费是多少元?
将长为1,宽为a的长方形纸片如图左那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图右那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作).
(1)第一次操作后,剩下的长方形的长和宽分别为多少?(用含a的代数式表示)
(2)第二次操作后,剩下的长方形的面积是多少?(列出代数式,不需化简)
(3)假如第二次操作后,剩下的长方形恰好是正方形,则a的值是多少?