已知:x=+1,y=
﹣1,求下列各式的值.
(1)x2+2xy+y2;
(2)x2﹣y2.
风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在 处测得塔杆顶端 的仰角是 ,沿 方向水平前进43米到达山底 处,在山顶 处发现正好一叶片到达最高位置,此时测得叶片的顶端 、 、 在同一直线上)的仰角是 .已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高 为10米, , ,求塔杆 的高.(参考数据: , , ,
解分式方程: .
计算: .
抛物线 与 轴交于 , ,与 轴交于 .
(1)若 ,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交 轴于 ,在对称轴左侧的抛物线上有一点 ,使 ,求点 的坐标;
(3)如图2,设 , 轴于 ,在线段 上是否存在点 ,使 ?若存在,求 的取值范围;若不存在,请说明理由.
某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价 元 为正整数),每月的销量为 箱.
(1)写出 与 之间的函数关系式和自变量 的取值范围;
(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?