蚌埠市某中学高三年级从甲(文)、乙(理)两个科组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲组学生的平均分是85,乙组学生成绩的中位数是83.
(1)求x和y的值;
(2)计算甲组7位学生成绩的方差;
(3)从成绩在90分以上的学生中随机抽取两名学生,求甲组至少有一名学生的概率.
如图为函数的部分图象,ABCD是矩形,A,B在图像上,将此矩形绕x轴旋转得到的旋转体的体积的最大值为
A.![]() |
B.![]() |
C.![]() |
D.![]() |
(本小题14分)已知函数,
,
.
(1)求函数的极值点;
(2)若在
上为单调函数,求
的取值范围;
(3)设,若在
上至少存在一个
,使得
成立,求
的取值范围.
(本小题13分)已知,函数
且
,
且
.
(1)如果实数满足
且
,函数
是否具有奇偶性? 如果有,求出相应的
值;如果没有,说明原因;
(2)如果,讨论函数
的单调性。
(本小题12分)已知圆C:,其中
为实常数.
(1)若直线l:被圆C截得的弦长为2,求
的值;
(2)设点,0为坐标原点,若圆C上存在点M,使|MA|="2" |MO|,求
的取值范围.
(本小题12分)已知等差数列满足:
.
(1)求的通项公式;
(2)若(
),求数列
的前n项和
.