扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为
平方米,且高度不低于
米.记防洪堤横断面的腰长为
(米),外周长(梯形的上底线段
与两腰长的和)为
(米).
⑴求关于
的函数关系式,并指出其定义域;
⑵要使防洪堤横断面的外周长不超过米,则其腰长
应在什么范围内?
⑶当防洪堤的腰长为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值
已知等腰梯形PDCB中(如图1),PB=3,DC=1,PB=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面
PAD⊥面ABCD(如图2)。
(1)证明:平面PAD⊥PCD;
(2)试在棱PB上确定一点M,使截面AMC,把几何体分成的两部分;
(3)在M满足(Ⅱ)的情况下,判断直线AM是否平行面PCD.
如图,已知是直角梯形,
,
,
,
平面
.
(1) 证明:;
(2) 在上是否存在一点
,使得
∥平面
?若存在,找出点
,并证明:
∥平面
;若不存在,请说明理由;
(3)若,求二面角
的余弦值.
如图,在五棱锥中,
,
.
(1)求证:;
(2)求点E到面SCD的距离;
(3)求二面角的大小.
已知:四棱锥P-ABCD,,底面ABCD是直角梯形,
,且AB∥CD,
, 点F为线段PC的中点,
(1)求证: BF∥平面PAD;
(2) 求证:。