游客
题文

(本小题共14分)如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量基本定理及坐标表示
登录免费查看答案和解析
相关试题

在椭圆中,为椭圆上的一点,过坐标原点的直线交椭圆于两点,其中在第一象限,过轴的垂线,垂足为,连接,
(1)若直线的斜率均存在,问它们的斜率之积是否为定值,若是,求出这个定值,若不是,说明理由;
(2)若的延长线与椭圆的交点,求证:.

在如图所示的几何体中,四边形为平行四边形,⊥平面.
(1)若是线段的中点,求证:∥平面;
(2)求二面角的余弦值.

已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.
(1)求该抛物线的方程;
(2)为坐标原点,是否存在平行于的直线,使得直线与抛物线有公共点,且直线的距离为?若存在,求出直线的方程;若不存在,说明理由.

如图,在平行六面体中,, ,,
(1)求;
(2)求证:平面.

..(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分。
设函数,数列满足
⑴求数列的通项公式;
⑵设,若恒成立,求实数的取值范围;
⑶是否存在以为首项,公比为的等比数列,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号