已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
如图,矩形 中, , ,将此矩形绕点 顺时针方向旋转 得到矩形 ,点 在边 上.
(1)若 , ,求在旋转过程中,点 到点 所经过路径的长度;
(2)将矩形 继续绕点 顺时针方向旋转得到矩形 ,点 在 的延长线上,设边 与 交于点 ,若 ,求 的值.
如图,平面直角坐标系中,已知点 的坐标为 .
(1)请用直尺(不带刻度)和圆规作一条直线 ,它与 轴和 轴的正半轴分别交于点 和点 ,且使 , 与 的面积相等.(作图不必写作法,但要保留作图痕迹.
(2)问:(1)中这样的直线 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线 ,并写出与之对应的函数表达式.
一水果店是 酒店某种水果的首选供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了 的这种水果.已知水果店每售出 该水果可获利润10元,未售出的部分每 将亏损6元,以 (单位: , 表示 酒店本月对这种水果的需求量, (元 表示水果店销售这批水果所获得的利润.
(1)求 关于 的函数表达式;
(2)问:当 酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?
如图,四边形 内接于 , , , , ,求 的长.