某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.
(1)将条形统计图补充完整;
(2)本次抽样调查的样本容量是 ;
(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.
解方程:x2+2x―4=0.
解方程:(1)x2+x―12=0;
如图,BD平分∠ABC,且AB=4,BC=6,则当BD=时,△ABD∽△DBC.
已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(―2,4),B(8,2),如图所示,则能使y1<y2成立的x的取值范围是.
如图,已 知直线 交坐标轴于
两点,以线段
为边向上作正方形
,过点
的抛物线与直线另一个交点为
.
(1)请直接写出点的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒个单位长度的速度沿射线
下滑,直至顶点
落在x轴上时停止.设正方形落在
轴下方部分的面积为
,求
关于滑行时间
的函数关系式,并写出相应自变量
的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积.