某高校在2015年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组号 |
分组 |
频数 |
频率 |
第1组 |
![]() |
5 |
0.050 |
第2组 |
![]() |
① |
0.350 |
第3组 |
![]() |
30 |
② |
第4组 |
![]() |
20 |
0.200 |
第5组 |
![]() |
10 |
0.100 |
合计 |
100 |
1.000 |
(1)请先求出频率分布表中①、②位置相应的数据;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求第4组至少有一名学生被考官A面试的概率?
已知集合,
.
(1)当时,求
;.
(2)若,求实数
的取值范围.
计算下列各式:(要求写出必要的运算步骤)
(1)
(2).
已知集合.
(1)求集合;
(2)求证:的充要条件为
;
(3)若命题,命题
且
是
的充分不必要条件,求实数
的取值范围.
已知,命题:
,命题
:
.
(1)若命题为真命题,求实数
的取值范围;
(2)若命题为真命题,求实数
的取值范围;
(3)若命题“”为真命题,且命题“
”为假命题,求实数
的取值范围.
抽取某种型号的车床生产的10个零件,编号为,…,
,测量其直径(单位:cm),得到下面数据:
编号 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
直径 |
1.51 |
1.49 |
1.49 |
1.51 |
1.49 |
1.48 |
1.47 |
1.53 |
1.52 |
1.47 |
其中直径在区间[1.49,1.51]内的零件为一等品.
(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(2)从一等品零件中,随机抽取2个.
①用零件的编号列出所有可能的抽取结果;
②求这2个零件直径相等的概率;
(3)若甲、乙分别从一等品中各取一个,求甲取到零件的直径大于乙取到零件的直径的概率.