某高校在2015年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
| 组号 |
分组 |
频数 |
频率 |
| 第1组 |
![]() |
5 |
0.050 |
| 第2组 |
![]() |
① |
0.350 |
| 第3组 |
![]() |
30 |
② |
| 第4组 |
![]() |
20 |
0.200 |
| 第5组 |
![]() |
10 |
0.100 |
| 合计 |
100 |
1.000 |
(1)请先求出频率分布表中①、②位置相应的数据;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求第4组至少有一名学生被考官A面试的概率?
如图,在矩形
中,
,点
在边
上,点
在边
上,且
,垂足为
,若将
沿
折起,使点
位于
位置,连接
,得四棱锥
.
(1)求证:平面
平面
;
(2)若
,直线
与平面
所成角的大小为
,求直线
与平面
所成角的正弦值.
已知
,其中
(1)当
时,求函数
的最大值和最小值,并写出相应的
的值.
(2)若
在R上恒为增函数,求实数
的取值范围.
已知
是关于
的二次方程
的两个实数根,求:(1)
的值;
(2)
的值.
已知命题
:直线
与抛物线
有两个交点;命题
:关于
的方程
有实根.若
为真命题,
为假命题,求实数
的取值范围.
如图,椭圆
:
(
)和圆
,已知圆
将椭圆
的长轴三等分,且圆
的面积为
.椭圆
的下顶点为
,过坐标原点
且与坐标轴不重合的任意直线
与圆
相交于点
,直线
与椭圆
的另一个交点分别是点
.
(1)求椭圆
的方程;
(2)(Ⅰ)设
的斜率为
,直线
斜率为
,求
的值;
(Ⅱ)求△
面积最大时直线
的方程.