游客
题文

某高校在2015年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.

组号
分组
频数
频率
第1组

5
0.050
第2组


0.350
第3组

30

第4组

20
0.200
第5组

10
0.100
合计
100
1.000

(1)请先求出频率分布表中①、②位置相应的数据;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求第4组至少有一名学生被考官A面试的概率?

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图,在矩形中,,点在边上,点在边上,且,垂足为,若将沿折起,使点位于位置,连接,得四棱锥
(1)求证:平面平面
(2)若,直线与平面所成角的大小为,求直线与平面所成角的正弦值.

已知,其中
(1)当时,求函数的最大值和最小值,并写出相应的的值.
(2)若在R上恒为增函数,求实数的取值范围.

已知是关于的二次方程的两个实数根,求:(1)的值;
(2)的值.

已知命题:直线与抛物线有两个交点;命题:关于的方程有实根.若为真命题,为假命题,求实数的取值范围.

如图,椭圆)和圆,已知圆将椭圆的长轴三等分,且圆的面积为.椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点,直线与椭圆的另一个交点分别是点
(1)求椭圆的方程;
(2)(Ⅰ)设的斜率为,直线斜率为,求的值;
(Ⅱ)求△面积最大时直线的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号