(本小题满分12分)已知椭圆C:过点
,离心率为
,点
分别为其左右焦点.
(1)求椭圆C的标准方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点,且
?若存在,求出该圆的方程;若不存在,请说明理由.
((本小题满分12分)
数列满足:
(1)求数列的通项公式;
(2)设数列的前n项和分别为An、Bn,问是否存在实数
,使得
为等差数列?若存在,求出
的值;若不存在,说明理由。
((本小题满分12分)
一项"过关游戏"规则规定: 在第n 关要抛掷骰子n次, 若这n次抛掷所出现的点数之和大于+1 (n∈N*), 则算过关.
(1)求在这项游戏中第三关过关的概率是多少?
(2)若规定n≤3, 求某人的过关数ξ的期望.
(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分别为AB、PC的中点。
(1)求异面直线PA与BF所成角的正切值。
(2)求证:EF⊥平面PCD。
(本小题满分10分)
已知函数
(1)求函数的最小正周期T;
(2)当时,求函数
的最大值和最小值。
如图,直四棱柱中,底面
是
的菱形,
,
,点
在棱
上,点
是棱
的中点.
(1)若是
的中点,求证:
;
(2)求出的长度,使得
为直二面角.