(本小题10分)如图,△ABC中,以AB为直径的⊙O交AC于D,已知CD=AD.
(1)求证:AB=CB;
(2)设过D点⊙O的切线交BC于H,DH=,tanA=3,求⊙O的直径AB.
(本小题满分13分)
数列
(I)求数列的通项公式;
(II)若的最大值。
(本小题满分13分)
已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
(本小题满分13分)
已知,
,f(x)=
⑴ 求f(x)的最小正周期和单调增区间;
⑵ 如果三角形ABC中,满足f(A)=,求角A的值.
(本小题14分)已知函数在
处取得极值。
(Ⅰ)求函数的解析式;
(Ⅱ)求证:对于区间上任意两个自变量的值
,都有
;
(Ⅲ)若过点可作曲线
的三条切线,求实数
的取值范围。
(本小题满分12分)如图所示,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过D点的直线l与曲线C相交于不同的两点M、N,问是否存在这样的直线使
与
平行,若平行,求出直线
的方程, 若不平行,请说明理由.